Pushing the Limits of Physics with Technology Metals
Technology Metals Designed for Particle Accelerators

In high energy projects like particle physics, particle accelerators are used to speed up and collide sub-atomic particles like protons or electrons to break them into smaller, fundamental particles. The short-lived particles are detected and then analyzed to determine how they interact with each other with the ultimate goal of understanding the physical laws of the universe.

As an example, inside the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator, two high-energy beams of protons travel close to the speed of light in opposite directions. These particle beams are guided around an accelerator ring by a strong magnetic field generated by superconducting electromagnets before they collide within sophisticated detectors.

H.C. Starck Solutions’ tungsten (W) alloys are used as beam collimators and shields, while H.C. Starck Solutions’ niobium (Nb) and tantalum (Ta) metals have unique properties that make them the primary choice for superconducting material to create the electromagnetic fields that steer and propel the charged particles to very high speeds. In addition, H.C. Starck Solutions offers extrusion services for extruding large diameter superconducting wire bundles.

Applications

- MRI and NMR medical equipment
- Mass spectroscopy
- Nuclear fusion research equipment
- Magnetic levitation
- Particle accelerators
- Superconductors
- Beam Blockers
- Targets
- Shielding Blocks
- RF Cavities and Supporting Parts
- Calorimeters

W, Nb, Ta Products

- Sheet
- Tube
- Plate
- Fabricated Parts
- Bar

H.C. Starck Solutions has supplied fabricated products including tungsten slugs used in the FCAL Section of the Atlas Detector of the Large Hadron Collider (LHC).
Refractory Metal Characteristics

H.C. Starck Solutions’ outstanding material properties provide shielding from radiation along with other highly desirable characteristics.

Tungsten High Density Alloys
- High Density
- High Strength
- Excellent Machinability
- High Melting Point

Niobium
- Low Temperature Superconductivity (low resistivity)

Tantalum
- High Density
- Excellent Corrosion Resistance
- Good Ductility

Property Data for Pure Metals*

<table>
<thead>
<tr>
<th>Property</th>
<th>Niobium</th>
<th>Tantalum</th>
<th>Tungsten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic Number</td>
<td>41</td>
<td>73</td>
<td>74</td>
</tr>
<tr>
<td>Atomic Weight</td>
<td>92.91</td>
<td>180.95</td>
<td>183.86</td>
</tr>
<tr>
<td>Lattice Type</td>
<td>bcc</td>
<td>bcc</td>
<td>bcc</td>
</tr>
<tr>
<td>Mass Density at 20 ºC gm/cc</td>
<td>8.57</td>
<td>16.6</td>
<td>19.3</td>
</tr>
<tr>
<td>Melting Point ºC</td>
<td>2468</td>
<td>2996</td>
<td>3410</td>
</tr>
<tr>
<td>Boiling Point ºC</td>
<td>4927</td>
<td>6100</td>
<td>5900</td>
</tr>
<tr>
<td>Linear Coefficient of Expansion per ºC</td>
<td>7.1x10⁻⁵</td>
<td>6.5x10⁻⁶</td>
<td>4.3x10⁻⁶</td>
</tr>
<tr>
<td>Thermal Conductivity at 20 ºC, cal/cm²/cm ºC/sec</td>
<td>0.523</td>
<td>0.13</td>
<td>0.4</td>
</tr>
<tr>
<td>Specific Heat cal/g/ºC, 20 ºC</td>
<td>0.126</td>
<td>0.036</td>
<td>0.032</td>
</tr>
<tr>
<td>Conductivity, %IACS</td>
<td>13.30%</td>
<td>13%</td>
<td>31%</td>
</tr>
<tr>
<td>Resistivity, microohms-cm, 20 ºC</td>
<td>15</td>
<td>13.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Temperature Coefficient of Resistivity per ºC (0-100 ºC)</td>
<td>0.00395</td>
<td>0.0038</td>
<td>0.0046</td>
</tr>
</tbody>
</table>

* Metal Alloys also available

Niobium and Tantalum Rod and Sheet for Superconductors

ASTM B392 (Nb) and B365 (Ta) Compliance

Rod Sizes:
- Diameters: 10 – 130 mm
- Max. length: 2.5 – 7.5 m

Sheet Sizes*
- 0.25 – 2.5 mm thick, up to 1m wide

*Other dimensions available upon request
The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis at least must include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by H.C. Starck Solutions. All information is given without warranty or guarantee. It is expressly understood and agreed that the customer assumes and hereby expressly releases H.C. Starck Solutions from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and shall not bind H.C. Starck Solutions. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent. Properties of the products referred to herein shall as general rule not be classified as information on the properties of the item for sale. In case of order please refer to issue number of the respective product data sheet. All deliveries are based on the latest issue of the product data sheet and the latest version of our General Conditions of Sale and Delivery.

The values in this publication are typical values and do not constitute a specification.