High Performance Metal Solutions

Molybdenum and Tungsten for Nuclear Fuel Processing

۲

With the latest in cutting-edge technology, zirconium and uranium raw materials can be easily and safely converted into finished components for nuclear fuel production to generate clean energy power.

H.C. Starck Solutions offers fabricated product solutions from molybdenum alloys and tungsten high density alloys:

- > Sintering Boat
- > Corrugated Sheets
- > Spacer Sheet

۲

- > Base Plate
- > Frame

۲

> Heating Elements

Providing both build-to-print components and design assistance, H.C. Starck Solutions serves leading industries in energy, aerospace and medical.

Molybdenum-Lanthana (MoLa) Alloys

H.C. Starck Solutions' research team has developed and fabricated molybdenum-lanthana (MoLa) alloy components for high temperature sintering of nuclear fuels.

((()

ODS MoLa contains lanthanum oxide (0.3 wt %, 0.6 wt. % and 1.1 wt. % lanthana) and is an oxide-dispersion strengthened material that contains a mixture of molybdenum with a very fine array or dispersion of lanthanum oxide particles. ODS MoLa has extraordinary resistance to recrystallization, improved ductility, and high-temperature formability.

High Performance Metal Solutions

These materials are applied in environments requiring dimensional stability and strength at temperatures above the capabilities of either pure molybdenum metal or TZM alloy.

Titanium-Zirconium-Molybdenum (TZM) Alloy

H.C. Starck Solutions' TZM (0.50 Ti, 0.08 Zr, 0.42 Mo) is consolidated by either the powder metallurgy or vacuum arc-casting processes. The titanium and zirconium carbides increase strength and creep resistance at elevated temperatures.

TZM molybdenum alloy also permits higher service temperatures without loss of toughness in comparison to pure molybdenum. Arc-cast material resists abrasion and is widely used for injection molding nozzles.

Tungsten Alloy Products

()

As a global leader in the manufacturer of high density tungsten alloys with radiation shielding, H.C. Starck Solutions offers complex-shaped components with density ranging from 17.2 to 18.5 g/cc per customer design.

Tungsten Alloys (K1700 thru K1850)

In general, absorption of x-rays and gamma radiation is in direct proportion to the density of the shielding material. H.C. Starck Solutions' tungsten alloys are more than 1.5 times as effective as lead and provide extremely efficient protection, particularly where space is limited.

((()

	K1700	K1701	K1750	K1800	K1801	K1850
(%)	90	90	92.5	95	95	97
(g/cm³)	17	17	17.5	18	18	18.5
(lb/in³)	0.61	0.61	0.63	0.65	0.65	0.67
(Rc)	23	22	24	25	24	26
(psi)	125,000	110,000	125,000	125,000	110,000	120,000
(N/mm²)	860	760	860	860	760	830
(psi)	85,000	80,000	90,000	90,000	85,000	95,000
(N/mm²)	590	550	620	620	590	660
(% in 1 inch)	12	4	10	8	2	6
(psi x 10 ⁶)	45	40	46	48	45	50
(kN/mm²)	310	280	320	330	310	345
	slight	none	slight	slight	none	slight
(μ)	>1.05	< 1.05	>1.05	>1.05	< 1.05	>1.05
(x10 ⁻⁶ /K)(20 °C - 500 °C)	5.1	5.4	4.9	4.8	5.0	4.8
(cgs)	0.20	0.23	0.24	0.27	0.32	0.26
(% IACS)	11	14	12	15	16	16
class	1	1	2	3	3	4
class	1	1	2	3	3	4
	(%) (g/cm ³) (lb/in ³) (Rc) (psi) (N/mm ²) (k)/mm ²)	K1700 (%) 90 (g/cm ³) 17 (b/in ³) 0.61 (Rc) 23 (psi) 125,000 (mm ²) 860 (n/mm ²) 590 (N/mm ²) 590 (k/mm ²) 12 (k/mm ²) 590 (k/mm ²) 12 (gin 1 inch) 12 (k/mm ²) 510 (k/mm ²) 510 (gin 1 inch) 5.10 (k/mm ²) 5.10 (k/mom ²) 5.10 (gin 4.05) 0.20 (x10 ^{-k} /K)(20 ^{-c} - 500 ^{-c}) 11 (gis 4.05) 11 (gis 4.05) 12	K1700 K1701 (%) 90 90 (g/cm³) 17 17 (lb/in³) 0.61 0.61 (g/cm²) 23 22 (psi) 125,000 110,000 (h/mm²) 860 760 (sji) 550 10 (h/mm²) 590 550 (%in 1 inch) 12 4 (kN/ma²) 510 23 (kl/ma²) 510 30 (gi n 1 inch) 12 4 (kl/ma²) 510 30 (kl/ma²) 510 30 (kl/ma²) 110,000 30 (kl/ma²) 510 30 (gi ACS) 5.1 5.4 (gi ALS) 11 4.4 (gi ALS) 11 4.4 (ass 1 4.4	K1700 K1701 K1750 (%) 90 90 92.5 (g/cm³) 17 17.5 17.5 (lb/in³) 0.61 0.63 0.63 (k) 23 22 24 (psi) 125,000 110,000 125,000 (ly/mm²) 860 760 860 (psi) 5500 80,000 90,000 (ly/mm²) 590 550 620 (ly/mm²) 12 4 10 (psi n1inch) 12 4 10 (ly/mm²) 45 10 10 (kl/mm²) 11 10 10 (psi x 10%) 12 4 10 (ly/mn²) 510 10 10 (kl/ma²) 10 10 10 (gis) 1.05 1.05 10 (ly/lo 5.1 5.4 4.9 (gis) 1.1 1.4 1.2 (gis)	K1700 K1701 K1750 K1800 (%) 90 92.5 95 (g/cm³) 17 17.5 18 (b/in³) 0.61 0.63 0.65 (R) 23 22 24 25 (psi) 125,000 10,000 125,000 125,000 (N/mm²) 860 80,000 90,000 90,000 (N/mm²) 590 50 620 620 (%in linch) 12 4 8 620 (kl/mm²) 590 50 620 620 (kl/mm²) 12 4 10 8 (kl/mm²) 130 8 8 8 (kl/ma²) 10 28 310 310 (kl/m²) 5105 514 49 48 (kl/s) 514 514 514 514 (kl/s) 514 514 514 514 (kl/s) 514 524	H700K1701K1750K1800K1801(%)9092.59595(g/m³)1717.51818(b/n³)0.610.630.650.65(R)2322242524(pi)12,00010,00012,00010,00010,000(Mm²)86076086080760(pi)59.0090,00090,00080,00080,000(mm²)59.00550620620590(mm²)1241082(whm²)1280303030(mm²)1241082(mm²)12550320310310(mm²)138323131(whm²)1012103131(mm²)10280313131(mm²)13281313131(mm²)1314123131(mm²)1314121531(mm²)1314121531(mm²)1314121516(max)1412153131(max)1412313131(max)1421313131(max)1421313131(max)14213131

۲

Exceeds requirements of the following specifications: MIL-T-21014, ASTM B777 and AMS 7725

Inspection criterion	Dimension	НРМ 1700	HPM 1710	HPM 1701	HPM 1705	HPM 1750	HPM 1750 sheet
Tungsten content	%	90.0	90.0	90.0	90.0	92.5	92.5
Density	g/cm ³	17.0 ± 0.2	17.0 ± 0.2	17.0±0.2	17.3 ± 0.2	17.5 ± 0.2	17.6 ± 0.2
Hardness	HV 30	≤ 320	≤ 320	≤ 320	≤ 360	≤ 325	≤ 460
Tensile Strength (Typical Value)	MPa	850	850	670	900	840	870
Minimal Yield Strength	MPa	520	520	520	520	520	520
Elongation (Typical Value)	%	12	12	3	8	14	16
Young's Modulus (Average Value)	GPa	320	320	300	330	340	340
Median Coefficient of Linear Thermal Expansion							
20 – 100 °C	10 ⁻⁶ /K	6.1	6.3	6.0	4.5	5.5	5.5
20 – 300 °C	10 ⁻⁶ /K	6.2	6.5	6.2	5.1	5.7	5.7
20 – 450 °C	10-₅/K	6.3	6.6	6.4	5.3	5.8	5.8
Thermal Conductivity	W/mK	≥ 70	≥ 70	≥ 90	≥ 70	≥ 75	≥ 75
Electrical Conductivity (Average Value)	%IACS	11	11	14	13	12	12
	MS/m	6.4	6.4	8.1	7.5	6.9	6.9
Specific Electrical Resistance (Average Value)	μΩm	0.16	0.16	0.12	0.13	0.15	0.15
Permeability µ		> 1.05	> 1.05	< 1.05	> 1.05	> 1.05	> 1.05

Typical Properties of Tungsten Composite Materials (HPM 1700 thru HPM 1850)

Inspection criterion	Dimension	HPM 1751	HPM 1760	HPM 1800	HPM 1810	HPM 1801	HPM 1850	HPM 1850W
Tungsten content	%	92.5	92.5	95.0	95.0	95.0	97.0	97.0
Density	g/cm ³	17.5 ± 0.2	17.6 ± 0.2	18.0 ± 0.2	18.0 ± 0.2	18.0 ± 0.2	18.5 ± 0.2	18.5 ± 0.2
Hardness	HV 30	≤ 325	≤ 325	≤ 332	≤ 332	≤ 332	≤ 340	£ 340
Tensile Strength (Typical Value)	MPa	690	870	830	830	700	830	890
Minimal Yield Strength	MPa	520	520	520	520	520	520	520
Elongation (Typical Value)	%	3	16	14	14	2	12	12
Young's Modulus (Average Value)	GPa	330	340	370	370	330	380	380
Median Coefficient of Linear Thermal Expansion								
20 – 100 °C	10 ⁻⁶ /K	5.7	5.5	4.9	5.2	5.4	5.1	4.8
20 – 300 °C	10-6/K	5.8	5.8	5.1	5.3	5.5	5.1	4.9
20 – 450 °C	10⁻⁰/K	5.9	5.9	5.2	5.5	5.6	5.2	5.0
Thermal Conductivity	W/mK	≥ 85	≥ 75	≥ 80	≥ 80	≥ 85	≥ 75	≥ 80
Electrical	%IACS	15	12	13	13	15	16	16
Conductivity (Average Value)	MS/m	8.5	6.9	7.7	7.7	9.0	9.3	9.3
Specific Electrical Resistance (Average Value)	μΩm	0.12	0.15	0.14	0.14	0.11	0.10	0.10
Permeability µ		< 1.05	> 1.05	> 1.05	> 1.05	< 1.05	> 1.05	> 1.05

USA

H.C. Starck Solutions 21801 Tungsten Road Euclid, OH 44117-1117 USA T +1 216 692 3990 F +1 216 692 0029 H.C. Starck Solutions 199 Wells Ave, Ste 107 Newton, MA 02459 USA T +1 480 977 6108 F +1 617 630 5879

۲

H.C. Starck Solutions

460 Jay Street Coldwater, MI 49036 USA T +1 517 279 9511 F +1 517 269 9512

Japan

۲

H.C. Starck Fabricated Products GK

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 JAPAN T +81-3-6721-8177 F +81-3-6733-8896

DPAP 03/2023

The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. This application-specific analysis at least must include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by H.C. Starck Solutions. All information is given without warranty or guarantee. It is expressly understood and agreed that the customer assumes and hereby expressly releases H.C. Starck Solutions from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and shall not bind H.C. Starck Solutions. Nothing herein shall be construed as a recommendation to use any product in conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent. Properties of the products referred to herein shall as general rule not be classed as information on the properties of the item for sale. In case of order please refer to issue number of the respective product data sheet. All deliveries are based on the latest version of our General Conditions of Sale and Delivers.

۲

The values in this publication are typical values and do not constitute a specification.

High Performance Metal Solutions

info@hcstarcksolutions.com www.hcstarcksolutions.com